53 research outputs found

    Trade-off between power and bandwidth consumption in a reconfigurable xhaul network architecture

    Get PDF
    The increasing number of wireless devices, the high required traffic bandwidth, and power consumption will lead to a revolution of mobile access networks, which is not a simple evolution of traditional ones. Cloud radio access network technologies are seen as promising solution in order to deal with the heavy requirements defined for 5G mobile networks. The introduction of the common public radio interface (CPRI) technology allows for a centralization in BaseBand unit (BBU) of some access functions with advantages in terms of power consumption saving when switching off algorithms are implemented. Unfortunately, the advantages of the CPRI technology are to be paid with an increase in required bandwidth to carry the traffic between the BBU and the radio remote unit (RRU), in which only the radio functions are implemented. For this reason, a tradeoff solution between power and bandwidth consumption is proposed and evaluated. The proposed solution consists of: 1) handling the traffic generated by the users through both RRU and traditional radio base stations (RBS) and 2) carrying the traffic generated by the RRU and RBS (CPRI and Ethernet flows) with a reconfigurable network. The proposed solution is investigated under the lognormal spatial traffic distribution assumption. After proposing resource dimensioning analytical models validated by simulation, we show how the sum of the bandwidth and power consumption may be minimized with the deployment of a given percentage of RRU. For instance we show how in 5G traffic scenarios this percentage can vary from 30% to 50% according to total traffic amount handled by a switching node of the reconfigurable network

    5G-crosshaul: an SDN/NFV integrated fronthaul/backhaul transport network architecture

    Get PDF
    This article proposes an innovative architecture design for a 5G transport solution (dubbed 5G-Crosshaul) targeting the integration of existing and new fronthaul and backhaul technologies and interfaces. At the heart of the proposed design lie an SDN/NFV-based management and orchestration entity (XCI), and an Ethernet-based packet forwarding entity (XFE) supporting various fronthaul and backhaul traffic QoS profiles. The XCI lever-ages widespread architectural frameworks for NFV (ETSI NFV) and SDN (Open Daylight and ONOS). It opens the 5G transport network as a service for innovative network applications on top (e.g., multi-tenancy, resource management), provisioning the required network and IT resources in a flexible, cost-effective, and abstract manner. The proposed design supports the concept of network slicing pushed by the industry for realizing a truly flexible, sharable, and cost-effective future 5G system.This work has been funded by the EU H2020 project “5G- Crosshaul: The 5G Integrated Fronthaul/Backhaul” (Grant no. 671598)

    Experimental Demonstration of a 5G Network Slice Deployment Exploiting Edge or Cloud Data-Centers

    Get PDF
    This paper has been presented at : Optical Fiber Communications Conference 2019The demo shows the 5G-TRANSFORMER architecture capability to deploy 5G network slices exploiting edge or cloud data-centers in minutes. Different slice deployments are shown to affect the performance of a dictionary mobile-app supported by them.This work has been partially funded by the EU H2020 "5G-Transformer'' Project (grant no. 761536

    Packet forwarding for heterogeneous technologies for integrated fronthaul/backhaul

    Get PDF
    Proceeding of: 2016 European Conference on Networks and Communications (EuCNC)To meet the future mobile user demand at a reduced cost, operators are looking at solutions such as C-RAN and different functional splits to decrease the cost of deploying and maintaining cell sites. The use of these technologies forces operators to manage two physically separated networks, one for backhaul and one for fronthaul. To solve this issue, transport networks for 5G will carry both fronthaul and backhaul traffic operating over heterogeneous data plane technologies. Such an integrated fronthaul/backhaul (denoted as 5G-Crosshaul) transport network will be software-controlled to adapt to the fluctuating capacity demand of the new generation air interfaces. Based on a proposed data- and control-plane architecture for 5G-Crosshaul, we propose a frame format common to both fronthaul and backhaul traffic as well as a corresponding abstraction of the forwarding behavior of the network elements. The common frame format and the forwarding abstraction define the information to be exchanged at the southbound interface (SBI) of the 5G-Crosshaul Control Infrastructure (XCI). This paper derives requirements for the SBI from 5G use cases.The authors of this paper have been sponsored in part by the project H2020-ICT-2014-2 “5G-Crosshaul”: The 5G integrated fronthaul/backhaul” (671598

    Automating vertical services deployments over the 5GT platform

    Get PDF
    This article presents a system for 5G networks that makes it possible to meet the diverse needs of vertical industries simultaneously sharing the same physical infrastructure. Orchestration, network slicing, edge computing, and federation are key technologies enabling industry verticals to have their own virtual networks, which might require aggregating transport networking and computing fabric, from the edge up to the core and cloud. Three novel building blocks are defined to meet these challenges in an automated manner: a vertical slicer as the entry point to create services and request slices, a service orchestrator to manage the services and decide their placement and allocation of required resources, and a mobile transport and computing platform virtualizing infrastructure networking and computing resources in an integrated manner. An experimental evaluation of the developed system shows its feasibility and confirms some of the benefits expected

    Xhaul: toward an integrated fronthaul/backhaul architecture in 5G networks

    Get PDF
    The Xhaul architecture presented in this article is aimed at developing a 5G integrated backhaul and fronthaul transport network enabling flexible and software-defined reconfiguration of all networking elements in a multi-tenant and service-oriented unified management environment. The Xhaul transport network vision consists of high-capacity switches and heterogeneous transmission links (e.g., fiber or wireless optics, high-capacity copper, mmWave) interconnecting remote radio heads, 5G points of attachment (5GPoAs, e.g., macro-and small cells), centralized-processing units (mini data centers), and points of presence of the core networks of one or multiple service provider(s). This transport network shall flexibly interconnect distributed 5G radio access and core network functions, hosted on network centralized nodes, through the implementation of a control infrastructure using a unified, abstract network model for control plane integration (Xhaul Control Infrastructure, XCI); and a unified data plane encompassing innovative high-capacity transmission technologies and novel deterministic-latency switch architectures (Xhaul packet Forwarding Element, XFE). Standardization is expected to play a major role in a future 5G integrated front haul/backhaul architecture for multi-vendor interoperability reasons. To this end, we review the major relevant activities in the current standardization landscape and the potential impact on the Xhaul architecture.This work has been partly supported by the Madrid Regional Government through the TIGRE5-CM program (S2013/ICE-2919) and the EU H2020 Xhaul Project (grant no. 671598)

    5G Mobile Transport and Computing Platform for verticals

    Get PDF
    The support of 5G verticals service requires todesign an efficient Mobile Transport and Computing Platformwhere transport, mobile and MEC must interact effectively. Inthis paper, a novel architecture is proposed providing itsmapping on ETSI NFV. Two relevant use cases, such asautomotive and cloud robotics are presented to assess the novelarchitecture.This work has been partially funded by the EU H2020 5G-Transformer Project (grant no. 761536)

    Integrating Fronthaul and Backhaul Networks: Transport Challenges and Feasibility Results

    Get PDF
    In Press / En PrensaIn addition to CPRI, new functional splits have been defined in 5G creating diverse fronthaul transport bandwidth and latency requirements. These fronthaul requirements shall be fulfilled simultaneously together with the backhaul requirements by an integrated fronthaul and backhaul transport solution. In this paper, we analyze the technical challenges to achieve an integrated transport solution in 5G and propose specific solutions to address these challenges. These solutions have been implemented and verified with commercially available equipment. Our results confirm that an integrated fronthaul and backhaul transport dubbed Crosshaul can meet all the requirements of 5G fronthaul and backhaul in a cost-efficient manner.Special thanks to the 5G-Crosshaul and 5G-TRANSFORMER team, in particular to Jaime Jose Garcia Reinoso, Chenguang Lu, Daniel Cederholm and Jakub Kocur who helped during the experimentation. This work has been partially funded by the EU H2020 project "5G-TRANSFORMER: 5G Mobile Transport Platform for Verticals" (grant no. 761536)

    5G-TRANSFORMER: Slicing and Orchestrating Transport Networks for Industry Verticals

    Get PDF
    This article dives into the design of the next generation Mobile Transport Networks to simultaneously support the needs of various vertical industries with diverse range of networking and computing requirements. Network Slicing has emerged as the most promising approach to address this challenge by enabling per-slice management of virtualized resources. We aim to bring the Network Slicing paradigm into mobile transport networks by provisioning and managing slices tailored to the needs of different vertical industries, specifically: automotive, eHealth and media. Our technical approach is twofold: (i) enabling Vertical Industries to meet their service requirements within customized slices; and (ii) aggregating and federating transport networking and computing fabric, from the edge up to the core and cloud, to create and manage slices throughout a federated virtualized infrastructure. The main focus of the article is on major technical highlights of verticaloriented slicing mechanisms for 5G mobile networks.This work has been partially supported by the EU H2020 5GPPP 5G-TRANSFORMER project (Grant 761536
    • …
    corecore